SPST vs SPDT Relays. What’s the difference?

Single Pole, Single Throw (SPST): This relay will be identified as having a middle 87b spade (or no middle spade at all). This is the most common relay used for fog lights or other simple circuits. If there is a middle 87b pin, it will have power whenever there is power to the 87 (whenever relay is “activated”). This way the middle 87b pin may be used as an extra power output.

Single Pole, Double Throw (SPDT): If you have a relay with an 87a pin in the middle spot, it is a SPDT relay, sometimes called a “changeover relay.” This type of relay will work for this application also, but you will not use pin 87a. In a changeover relay, the 87a pin will be “HOT” anytime the 87 pin is “OFF,” so long as power is connected to pin 30.

Thanks go to Bob Wilson (volvodad on Brickboard) for contributing to these differences.
Suggested Electric Fan Wiring Diagrams

These diagrams show the use of relays, ON/OFF sensors, ON/OFF switches and ON/OFF fan controllers. Nothing here should be confused with the latest generation of PWM VARIABLE SPEED CONTROLLERS, which have much higher technology, such as a soft start feature and smooth ramping, but not necessarily better durability.

Suggested Primary Cooling Fan - Single Speed (ON/OFF)

Using 12 Volt Switching Devices Only for Primary Activation

NOTE: Most stand-alone adjustable thermostats (i.e.: Hayden, Flex-a-Lite or Perma-Cool brands) can provide a 12 volt output when activated. Relays shown in these diagrams can provide options for useful features such as an AC override ON and/or manual override ON.

Mini Relay Connections

View from Bottom

SPST type has 87b

Mini Relay Connections

View from Bottom

SPST type has 87b

SPST vs SPDT Relays. What’s the difference?

Single Pole, Single Throw (SPST): This relay will be identified as having a middle 87b spade (or no middle spade at all). This is the most common relay used for fog lights or other simple circuits. If there is a middle 87b pin, it will have power whenever there is power to the 87 (whenever relay is “activated”). This way the middle 87b pin may be used as an extra power output.

Single Pole, Double Throw (SPDT): If you have a relay with an 87a pin in the middle spot, it is a SPDT relay, sometimes called a “changeover relay.” This type of relay will work for this application also, but you will not use pin 87a. In a changeover relay, the 87a pin will be “HOT” anytime the 87 pin is “OFF,” so long as power is connected to pin 30.

Thanks go to Bob Wilson (volvodad on Brickboard) for contributing to these differences.
SPST vs SPDT Relays. What’s the difference?

Single Pole, Single Throw (SPST): This relay will be identified as having a middle 87b spade (or no middle spade at all). This is the most common relay used for fog lights or other simple circuits. If there is a middle 87b pin, it will have power whenever there is power to the 87 (whenever relay is “activated”). This way the middle 87b pin may be used as an extra power output.

Single Pole, Double Throw (SPDT): If you have a relay with an 87a pin in the middle spot, it is a SPDT relay, sometimes called a “changeover relay.” This type of relay will work for this application also, but you will not use pin 87a. In a changeover relay, the 87a pin will be “HOT” anytime the 87 pin is “OFF,” so long as power is connected to pin 30.

Thanks go to Bob Wilson (volvodad on Brickboard) for contributing to these differences.

Suggested Electric Fan Wiring Diagrams

These diagrams show the use of relays, ON/OFF sensors, ON/OFF switches and ON/OFF fan controllers. Nothing here should be confused with the latest generation of PWM VARIABLE SPEED CONTROLLERS, which have much higher technology, such as a soft start feature and smooth ramping, but not necessarily better durability.

Converting a 12 Volt Switch into a Ground Switch

If you have an adjustable thermostat that uses 12 VOLT SWITCHING ONLY, such as the popular Hayden or Flex-a-Lite brand thermostats with built-in relays, you may normally only use it with a diagram use it with any diagram showing a need for a 12 VOLT SWITCHED DEVICE. if you follow these steps you may convert it to a GROUND SWITCHED DEVICE using a simple SPST relay.

Mini Relay Connections

View from Bottom

SPST type has 87b

SIGNAL CIRCUIT

12V SWITCHED (IGNITION OR FUSE PANEL)

Power “ON” when key is in the “RUN” position.

5 AMP FUSE

RECOMMENDED WIRE SIZES:

8-10 GA: FAN POWER AND GROUND.
16-18 GA: ALL OTHERS.

STANDARD RELAY PINS

30: Constant 12V, unswitched
85: Signal (switched 12V)
86: Ground (completes circuit)
87: Consumer (fan) 12V +
87b: Extra consumer (same as 87)

HAYDEN 3647

PRIMARY COOLING FAN
DUAL FANS (with Dual Relays) - SINGLE SPEED (ON/OFF)

Using Ground Switched Devices Only for Primary Activation

Using dual relays for two fans is not required. You could use one relay. However two relays will divide the load. And if a relay fails, you will still have one fan running.

Recommended Wire Sizes:
- **8-10 GA**: Fan Power and Ground
- **16-18 GA**: All Others

Mini Relay Connections
View from Bottom
SPST type has 87b

Standard Relay Pins
- 30: Constant 12V, unswitched
- 85: Signal (switched 12V)
- 86: Ground (completes circuit)
- 87: Consumer (fan) 12V +
- 87b: Extra consumer (same as 87)

Optional Override Switch
Turns on fan, by-passing temp sensor and A/C relay.

Recommended Wire Sizes
- 8-10 GA: Fan Power and Ground
- 16-18 GA: All Others
PRIMARY COOLING FAN

DUAL FANS (with Dual Relays) - SINGLE SPEED (ON/OFF)

Using 12 Volt Switched Devices Only for Primary Activation

Using dual relays for two fans is not required. You could use one relay. However two relays will divide the load and if a relay fails, you will still have one fan running.

12V SWITCHED WIRE TO GREEN WIRE AT A/C CLUTCH.

NOTE: OR IN AN ’84 TO ’89 240 YOU MAY USE THE A/C POWER ‘ON’ WIRE:

RED/WHITE WIRE AT AC SWITCH MICROSWITCH IN DASH.

Optional override switch turns on fans, by-passing temp sensor and A/C relay.

OPTIONAL AC RELAY OVERRIDES TEMP SWITCH AND TURNS ON FANS WHEN A/C IS TURNED ON

POWER SOURCE SHOULD BE BATTERY OR JUNCTION BLOCK NEAR BATTERY

OPTIONAL DIODE PN: IN5408

Make sure the diode band is facing toward the fan or relay and away from ground. Protects relay from arcing damage due to fan spinning after shut-off.

OPTIONAL DIODE PN: IN5408

Make sure the diode band is facing toward the fan or relay and away from ground. Protects relay from arcing damage due to fan spinning after shut-off.

STANDARD RELAY PINS

30: Constant 12V, unswitched
85: Signal (switched 12V)
86: Ground (completes circuit)
87: Consumer (fan) 12V +
87b: Extra consumer (same as 87)
This diagram works well if you only wish to add a single fan to the front of your A/C condenser. It will not come on at a particular temperature, but only when the A/C is turned on.

RECOMMENDED WIRE SIZES:
- 8-10 GA: Fan power and ground.
- 16-18 GA: All others.

POWER SOURCE SHOULD BE BATTERY OR JUNCTION BLOCK NEAR BATTERY

STANDARD RELAY PINS
- 30: Constant 12V, unswitched
- 85: Signal (switched 12V)
- 86: Ground (completes circuit)
- 87: Consumer (fan) 12V+
- 87b: Extra consumer (same as 87)

12V SWITCHED WIRE TO GREEN WIRE AT A/C CLUTCH.
NOTE: OR IN AN '84 TO '89 240 YOU MAY USE THE A/C CONSTANT “ON” WIRE: RED/WHITE WIRE AT AC MICROSWITCH IN DASH. THIS PERMITS THE FAN TO RUN CONSTANT ANYTIME THE A/C SWITCH IS IN THE “ON” POSITION. (I.E.: FAN WILL NOT CYCLE ON/OFF WHEN COMPRESSOR DOES).

OPTIONAL DIODE
PN: IN5408
Make sure the diode band is facing toward the fan and away from ground. Protects relay from arcing damage due to fan spinning after shut-off.
Primary Cooling Fan - Two Speed Type (ON/OFF)
Using Ground Switched Devices Only for Primary Activation

TWO SPEED FAN CIRCUITRY SIMPLIFIED

This is not as confusing as it looks. A two-speed fan may be used as long as you use TWO relays and TWO temperature sensors set for different set points.

The fan will remain off until your low temp set point is reached, activating the low speed relay through 87a on the high speed changeover relay. If your temperature climbs higher, the second sensor high set point will activate the changeover relay, cutting power to 87a and sending power through 87 to the high speed fan. This way you can be sure only one circuit will be on at a time.

The high speed relay capacity will depend on the fan. Most 16 inch or smaller fans can get by with a 40A to 50A relay for the high speed. A larger fan, such as the 18 inch Ford Taurus/T-Bird/Lincoln Mk VIII fans, should use a 70A or 80A relay. These fans generally use ~40 amps on high, so power and ground cables for these big fans should be 8-10 GA.

Simple mechanical radiator coolant sensors may be used as long as they are set for different temperature ranges. Or simple electric adjustable sensors, such as the Hayden 3653 pictured above right, can be purchased from Amazon or Summit Racing for about $20 each.
Primary Cooling Fan - Two Speed Type (ON/OFF)
Using 12 Volt Switching Devices Only for Primary Activation

Relay Connections

View from Bottom
SPST type has 87b
SPDT type has 87a

Standard Relay Pins

30: Constant 12V, unswitched
85: Signal (switched 12V)
86: Ground (completes circuit)
87: Consumer (fan) 12V +
87a: Extra consumer (same as 87)
87b: Opposite of 87 (changeover)

Optional override switch turns on fan to high speed, by-passing temp sensor.

High Range Thermostat
Set for 200 Deg F or Higher

Low Range Thermostat
Set for 180 to 190 Deg F

Primary Cooling Fan - Two Speed Type

This is not as confusing as it looks. A two-speed fan may be used as long as you use TWO relays and TWO temperature sensors set for different set points.

The fan will remain off until your low temp set point is reached, activating the low speed relay through 87a on the high speed changeover relay. If your temperature climbs higher, the second sensor high set point will activate the changeover relay, cutting power to 87a and sending power through 87 to the high speed fan. This way you can be sure only one circuit will be on at a time.

The high speed relay capacity will depend on the fan. Most 16 inch or smaller fans can get by with a 40A to 50A relay for the high speed. A larger fan, such as the 18 inch Ford Taurus/T-Bird/Lincoln Mk VIII fans, should use a 70A or 80A relay. These fans generally use ~40 amps on high, so power and ground cables for these big fans should be 8-10 GA.

Simple mechanical radiator coolant sensors may be used as long as they are set for different temperature ranges. Or simple electric adjustable sensors, such as the Hayden 3653 pictured above right, can be purchased from Amazon or Summit Racing for about $20 each.